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Abstract The ability to create quantitative ecological models which closely follow empirical data is power-

ful. Models inform many management and conservation policies, and also provide a theoretical framework

in which simplified cause-and-effect relationships illuminate key characteristics and interactions[1]. Accord-

ingly, ecologists have devoted significant time to crafting models that give realistic dynamics, and these

models require the input of adjustable parameters set using empirical observations. The challenge lies in

how these parameters can be estimated. Unfortunately, barriers unique to marine ecosystems result in

observational undersampling[2], and traditional methods for solving multivariate auto-regressive models

struggle when faced with short replicates of noisy data[3]. The method proposed herein uses compressive

sensing, a ℓ1 minimization technique for recovering sparse linear relationships, to estimate the coefficients

of a Lotka-Volterra system[4]. This method is then tested by generating realistic Lotka-Volterra systems,

producing short replicates, and using these replicates to estimate the coefficients of the initial system.

1 Introduction

A foundational concern of community ecology is predicting how population abundances within a community will

change over time. Within the context of fisheries, there is often a subset of focal or managed species of particular

interest to us and we wish to understand how the population will behave in given conditions[2]. Early fisheries models
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operated under the assumption that the dynamics of focal species could be predicted based on historical abundances

and removal rates. Unfortunately, the task is not so simple. It is now commonly accepted that accurate predictions

also require, at minimum, an understanding of the network of underlying trophic relationships, which we refer to as a

“food web”[5][6][7].

Causality is a difficult relation to sift out of data, especially in the case of multivariate auto-regressive models.

Even in coupled equation systems with chaotic behaviour, false or ”mirage” correlations are common[8]. Variables that

are correlated across the data series might not be in actuality, and this problem is exacerbated by the nature of data

that is available: often only short replicates[1]. Moreover, traditional methods for solving for the coefficients of such

systems require large amounts of data; like the ten or more sample points recommended for each parameter estimated

for Least Squares[9]. As mathematicians further refine the techniques and lower bounds on the required amount of

data to reconstruct systems, the question for ecologists becomes how much data is necessary to estimate dynamics,

and whether time-series data is now, by itself, sufficient to estimate trophic links and coefficients of interactions. The

central goal of this project is to investigate how variations in other populations affect the growth rate of our focal

species and the amount of data required to come to these conclusions.

The magnitude and nature of these effects can be alternatively conceptualized as appropriate coefficients for the

Lotka-Volterra equations. This model is one of the most widely used and earliest explored dynamical systems modelling

the size of predator and prey biomass and it can be viewed as an approximation of the true dynamics near equilibrium.

Developed independently by Lotka[10] and Volterra[11], the model is relatively straight-forward and can be expressed

as a system of first-order quadratic ordinary differential equations (ODEs). Its coefficients must be set based on data

that is often noisy and underdetermined. However, it is reasonable to assume that the coefficients are sparse (ie. they

contain many zeros), as a given species likely does not have trophic links to the majority of other species present in

the system. On the contrary, by dynamical systems theory, a necessary condition to having any sort of stable system

is to have a certain degree of sparseness. Systems that are too interconnected are far less stable than their sparse

counterparts[12].

The recovery of sparse systems is a widely studied topic in information theory, with a number of methods available

to choose from[13]. Compressive sensing is but one potential method for fitting such models; it is used to reconstruct

sparse signals from a limited number of linear measurements by means of convex optimization techniques[4][14].

2 Methodology

2.1 Generating Realistic Lotka-Volterra Time Series

Lotka-Volterra equations can take the form

ẋ = diag(x)(r+Ax),
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or

dxi

dt
= rixi +

n∑
j=1

aijxixj , i = 1, . . . , n (1)

where r is a vector of length n representing intrinsic birth/death rates, x is the state of the system and A is the n×n

community matrix. The element aij of A is the effect that species j has on species i. diag(x) is the n× n matrix with

elements of the vector x along its diagonal and all other elements being 0. Equation (1) is the ODE that defines the

growth rate of one particular species, xi, where n is the total number of species in the system.

Within this framework, a narrower objective statement arises: given a time series of x and ẋ values, can we find A

and r that accurately predicts the values of x and ẋ in the future? How much data do we need to achieve this?

Before testing the efficacy of compressive sensing at recovering realistic Lotka-Volterra dynamics, we must first

have realistic dynamics to recover. The Lotka-Volterra model does not include any guidance on the choosing of trophic

links, and so the question we are faced with is given the number of species, n, and the desired connectance level or

sparsity, S, what mechanisms can be used to create dynamics that would resemble realistic food web dynamics? We

define S to be the proportion of existing links out of the total possible links in the ecosystem; that is S = non-zero links
n2 .

The Lotka-Volterra model also does not specify what the value of those coefficients should be. We used metabolic-

based scaling factors from Yodzi and Innes’[15] to set intrinsic growth rates and interaction coefficients, and generated

predator-prey interaction patterns via the Niche Model of food web interactions [16]. The model is based on the very

simple principle that larger organisms eat smaller organisms and was chosen for its ability to mimic key structural

features of food webs. For example, the percentage of species with no predators and food chain length match empirical

observations much better than randomly assembled unstructured food webs. The niche model begins by assigning each

Figure 1. Adapted Williams and Martinez, 2000 [16], a visual representation of how the niche model generates trophic links.
The triangles represent the position of each species with respect to their νi, and the coloured bars, ie. the ρi-length interval
centred at γi, represent the niche ranges of the prey.

species a position in a hierarchy with a niche value, νi, drawn from a uniform distribution from 0 to 1. This niche

value is a representation of the log-body size and ties nicely into the allometric coefficients that are used to determine

Lotka-Volterra coefficients. Following this, the model assigns a range in [0, 1] to each species and the species will
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consume all species with niche values within this range. The width of the range, ρi, is drawn from a beta-distribution

with the parameters α = 1, β = 1
2S − 1. The centre, γi, is then uniformly drawn from the interval [ρi/2, νi][16].

Species i then consumes all species with a niche value in [γi − ρi/2, γi + ρi/2][16].

Figure 2. The food web generated based on the niche values, radii, and centre points in Figure 1
.

From the niche model, we obtain a food web with the appropriate size and connectance in the form of a matrix,

where aij = 0 if j does not eat i and and aij = 1 if j eats i. This represents the trophic links but does not capture

the magnitude of these relationships. In order to convert our food web into a system of ODEs, we look to a Type I,

Taylor series approximation of the Holling Type II response Lotka-Volterra system defined by Yodzis and Innes[15],

outlined in Equation (2). The basic premise of the coefficients which realistically mimic predator-prey dynamics are

parameters which represent growth rate, mortality, predation rate, and conversion efficiencies. These parameters, are

in turn determined by metabolic type (eg. herbivorous vertebrate ectotherm) and scale allometrically. That is to say,

these rates scale logarithmically with body size.

dR

dt
= R

(
1− R

K

)
−
(

vw

1− δ
f2

)
P

R

R0

dP

dt
= Pv

(
−1 + w

R

R0

) (2)

where

v =
aT
frar

(
mP

mC

)0.25

, w =
fJaJ
aT

P is the biomass of the predator species, and R is the biomass of the resources species.

Using the empirically determined rates and coefficients in Table 1, plug in the values into Equation (2) to obtain

dynamics.
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Coefficient Subset of Species Description Value

δ Carnivore % energy lost during ingestion and metabolization 0.15

δ Herbivore % energy lost during ingestion and metabolization 0.55

aT Vertebrate ectotherm Baseline respiration rate (Energy expenditure in free existence) 2.3

aJ Vertebrate ectotherm Maximal rate of energy ingestion 8.9

ar Vertebrate ectotherm Physiological capacity for production 6.6

ar Phytoplankton (producer) Physiological capacity for production 0.4

fr Vertebrate ectotherm Production biomass ratio 1

fr Phytoplankton (producer) Production biomass ratio 1

fe Prey Fraction eaten 1

R0 Prey Half-saturation density of prey 0.5

mR Prey Mass of prey νR

mP Consumer Mass of predator νP

Table 1: Empirical rates and universal coefficients which represent the efficacy and probability of natural processes for

various metabolic organism types.

Before constructing our ecosystem, we must first extend the two species dynamics to a multi-species model. This

can be accomplished rather intuitively using the following equations. Let P be an arbitrary non-resource, R be an

arbitrary resource, and a subscript of 0 indicate the half-saturation density of that species. E.g. P0 is the half-saturation

density of the species P .

dR

dt
= R

(
1− R

K

)
−

∑
Q∈Predators

QRvwfe
(1− δ)R0nQ

dP

dt
= −Pv + Pvw

∑
R′∈Prey

R′ w

R′
0nP

−
∑

Q∈Predators

QPvwfe
(1− δ)P0nQ

(3)

Examining Equations (3) and (1), we can directly populate the entries of A and r using the parameters in Equa-

tion (3).

We assume that the biomasses of the resource species grow logistically at equal rates in the absence of predators

and there is no interspecific competition between resource species. Therefore, if species i is a resource, j is its consumer,

xi and xj are the biomass of species i and j respectively, we see can see by plugging the ODEs into our matrix form
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that

ri = 1,

aii =
1

K
,

aij = − vw

1− δ
fe

1

xi0ϕj
,

where ϕj is the number of prey that species j has.

Conversely, let species i be a consumer, j its predator, and k its prey. Starvation causes the biomass of i to decrease

exponentially at rate v in the absence of prey. As a function of some of the rates in table 1, the biomass increases by

v
xk0ϕi

xixk for each prey species it has and decreases by a factor of vwfe
1

(1−δ)xi0ϕj
. Therefore, we have

ri = −v

aij = − vwfe
(1− δ)xi0ϕj

aik =
w

xk0ϕi
.

We then use the generated systems to test the process outlined in the following Section 2.2.

2.2 Recovering Hidden Dynamics With Compressive Sensing

Compressive sensing is a signal-recovery method, which means that we are attempting to recover some information,

called a signal, from some data that we have. This data is obtained by somehow transforming the initial signal, in

this case by multiplying the signal by a measurement matrix. Let us define the signal and matrix with respect to the

Lotka-Volterra system; in this case, the signal we are trying to recover is the set of coefficients (A, r). The method

used in this experiment closely follows that which was outlined in Schaeffer and Tran, 2018[17].

2.2.1 The measurement model: From unknown coefficients to time series data

In our case, the data we have are bursts of time series. A burst is a time series of some fixed length, and each burst

has different initial conditions (generated from the exponential distribution). In ecology, they are often referred to as

replicates or short community time series. We are assuming that we have access to both growth rate and biomass of our

focal set of species at each time, though this is a non-trivial assumption as rates of change cannot be easily measured

empirically and are not typically available for real data. Nevertheless, it is possible to, from state measurements,

approximate them with smoothing functions[18]. Writing all of this information in matrix form, we can generalize a

vector of growth rates, ẋ in our initial system, to the following matrix of velocity for the kth burst out of K total
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bursts.

V (k) =



ẋ1(k, t0) ẋ2(k, t0) · · · ẋn(k, t0)

ẋ1(k, t1) ẋ2(k, t1) · · · ẋn(k, t1)

...
...

. . .
...

ẋ1(k, tm) ẋ2(k, tm) · · · ẋn(k, tm)


(4)

Here, ẋi(k, tj) is the rate of change of species xi at time tj . Moreover, let xi(k, tj) be the biomass of species xi at time

tj .

We can see in Equation (1) that each ẋi(k, tj) term can be written out as a function of xi, and xixj for all j from

1 to n (where n is number of species). xi and xixj are then what we refer to as the standard polynomial basis. Taking

this basis, consider that the community matrix can be decomposed into the following matrix product of a coefficient

matrix and a time-dependent basis matrix. In this case, we may apply Equation (1) to the entirety of the velocity

matrix, V (k), note that each column, which represents the velocity of one species over time, is a function of xi and

xixj at the given time value.

Writing this relationship between V (k) and the state measurements as a matrix-vector product, we have

V (k) =



x1(k, t0) x2(k, t0) · · · xn(k, t0) x1(k, t0)
2 x1(k, t0)x2(k, t0) · · · xn(k, t0)

2

x1(k, t1) x2(k, t1) · · · xn(k, t1) x1(k, t1)
2 x1(k, t1)x2(k, t1) · · · xn(k, t1)

2

...
...

...
. . .

...
...

...
. . .

...

x1(k, tm) x2(k, tm) · · · xn(k, tm) x1(k, tm)2 x1(k, tm)x2(k, tm) · · · xn(k, tm)2


C,

where C is a matrix of coefficients of dimension (n2 + n)× n. Each column of C corresponds to the coefficients of the

ODE for the ith species.

This can be streamlined even further by noting that for each dxi

dt , there are certain basis vectors that must have a

coefficient of 0. By Equation (1), we can define a basis matrix for each species. Define

B
(k)
i =



xi(k, t0) x1(k, t0)xi(k, t0) x2(k, t0)xi(k, t0) · · · xn(k, t0)xi(k, t0)

xi(k, t1) x1(k, t1)xi(k, t1) x2(k, t1)xi(k, t1) · · · xn(k, t1)xi(k, t1)

...
...

...
. . .

...

xi(k, tm) x1(k, tm)xi(k, tm) x2(k, tm)xi(k, tm) · · · xn(k, tm)xi(k, tm)


.

We now have that the ith column of V (k), which represents the rates of change of one species over the whole

burst, is a product of this new basis matrix and the ith column of a new coefficient matrix, C ′, which has the terms

that must be zero removed. This new sensing matrix also makes the relationship between A, r, V (k), and C ′ more
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straightforward and explicit.

V (k)( , i) = B
(k)
i C ′( , i) (5)

C ′ =



r1 r2 · · · rn

a11 a21 · · · an1
...

...
. . .

...

a1n a2n · · · ann


(6)

Here, ( , i) represents the ith column of a matrix. Notice that because of how we ordered the basis elements in

B
(k)
i , we have that C ′(1, i) is the value of ri and C ′(j + 1, i) is the value of aij .

By the nature of matrix multiplication, if there are K bursts, we can “stack” the matrices in Equation (5) as

follows. 

V (1)( , i)

V (2)( , i)

...

V (K)( , i)


=



B
(1)
i

B
(2)
i

...

B
(K)
i


C ′( , i). (7)

Again, to make this equation easier to denote, let us define the matrices in the above equation as

V ( , i) = BiC
′( , i) (8)

Recall that the values of V and the basis matrices, B
(k)
i , are known and we are now attempting to recover the

sparse signal C ′( , i), or the columns of the coefficient matrix C ′, one by one.

2.2.2 Recovery via ℓ1 minimization: From time series data to coefficients

Using the l1 measure, the convex optimization problem

Ĉ(, i) := argmin
C′( ,i): V ( ,i)=BiC′( ,i)

(||C ′( , i)||1) (9)

can be solved to obtain C ′ and therefore r and A with a high-degree of accuracy. Here, the subscript C ′( , i) : V ( , i) =

BiC
′( , i) denotes the support of the possible solutions: our final guess for C ′( , i), must satisfy this condition that,

when multiplied by Bi, we obtain V ( , i). This formula assumes no noise as this is a strict equality; further discussion

on noisy data is included in Section 3. argmin(||C ′( , i)||1) denotes the minimum argument, or the C ′( , i) in the

support that has the minimum ℓ1 norm, where ||x||1 =
∑n

1 |xi|. In other words, this equation sets our guess, Ĉ( , i),

to be the C ′
i with the smallest ℓ1 norm that satisfies the condition V ( , i) = BiC

′( , i).
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Norms are generalizations of the notion of length, where ℓ2 is the common Euclidean norm. The ℓp norm is defined

and denoted as follows: for a vector x = (x1, x2 · · · , xn), the ℓp norm of x is ||x||p = p
√∑n

1 (xi)p. Recall that the

ℓ1 norm is the one used in compressive sensing, i.e. the absolute value of the magnitude of the vector defines the

penalty term. We chose the ℓ1 norm (the sum of the absolute values of all elements) because of its geometry, and

specifically its convexity, and therefore it maximizes sparsity. This is not a new idea, methods such have LASSO also

use ℓ1 minimization in conjunction with the optimization problem of minimizing squared-error lost to estimate the

linear relationship between predictor and response variables[19]. To understand why this works, it is first important

to understand some basic properties of norms.

Loosely speaking, the convexity of a norm measures the “pointy-ness” of the unit ball along the basis vectors. The

unit ball is the subset, U of all vectors that have a norm equal to one, ie. ∀x ∈ U, ||x||1 = 1. Graphically, it can be

visualized as some shape around the origin such that all points on the perimeter of the shape are “equidistant” from

the origin within the norm. Figure 1 displays the shape of unit balls for various p norms. For the familiar ℓ2 (Euclidean

norm) in R2, the unit ball takes on the form of a circle. In this case, U := {(y1, y2) ∈ R2 s.t. ||(y1, y2)||2 =
√

y21 + y22 =

1}, or the unit ball U is the set of all points (y1, y2) such that the ℓ2 norm of (y1, y2),
√

y21 + y22 is equal to 1. Clearly,

this is a circle with radius 1. This result can also be generalized to obtain that for any circle centred at the origin in

R2, all points on its perimeter will have the same ℓ2 norm.

Figure 3. Unit balls in various ℓp norms.

As shown in Figure 3 , for the ℓ1 norm on R2, the unit “ball” is actually shaped like a diamond with its points at

(0, 1), (1, 0), (−1, 0), and (0,−1). Just as in the case of the Euclidean norm, where for all points x and y on a circle

centred at the origin’s perimeter, ||x||2 = ||y||2, we have that for all points x and y on the perimeter of a diamond

centred at (0, 0), ||x||1 = ||y||1. Recall that we are solving an underdetermined matrix problem. As such, there is

a family of solutions that satisfies the condition V ( , i) = BiC
′( , i) in the optimization problem in Equation (9).

Returning to an R2 case, we might obtain a line of possible solutions. When searching for the vector with the smallest

norm, we obtain the vector that intersects the smallest diamond (recall that all points on a given diamond have the

same norm). As the unit ball in ℓ1 is ”pointy”, it is almost certain that this solution intersects the diamond at one

of the points along a basis vector, meaning that the other basis vectors have a value of 0 at this particular solution.
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Conversely, for a non-convex norm, like the Euclidean norm, the element with the smallest norm (i.e. the element that

intersects the smallest circle) is almost certainly not sparse. However, when determining which ℓp norm to use, this

Figure 4. The same solution hyperplane (blue line) and the solution with the smallest ℓ1 norm (point where it intersects red
diamond) is sparse, while the same is not true for the solution with the smallest ℓ2 norm.

argument does not restrict our p options to p = 1. Examining Figure 3, it is immediately clear that ℓ1 is not the only

convex ℓp norm: in fact, for all p < 1, the norms grow only more and more convex as p −→ 0, and at p = 0, it is

certain that the argmin found is sparse. Unfortunately, the ℓ0 minimization is NP hard to compute and as such, is

not a very useful tool for large datasets[20].

In the case of noisy data, the conditions of the convex optimization would need to be relaxed in order to prevent

overfitting and to generate the best possible solution. Instead of the strict equality presented in Equation (9), the

problem

Ĉ(, i) := argmin
C′( ,i):||V ( ,i)−BiC′( ,i)||2≤σ

(||C ′( , i)||1) (10)

enforces the condition that the Euclidean norm of the difference between V ( , i) and BiC
′( , i)is less than some error

term σ [17].

2.3 Toy Example Parameters & Metrics

In this experiment, we use the burst length M = 8, representing times 0-0.7 for a food web with n = 10 species. The

burst length was specifically chosen to be small, fewer than the number of species in the system, while being long

enough to capture meaningful interactions between species. The connectance S = 0.3 was picked as it is on the higher

end of connectances empirically observed in food webs[21]. If the method works when S = 0.3, it will work for food

webs with a connectance of less than 0.3.
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At time 0, the biomasses were picked using an exponential distribution (so that all biomasses were above 0). M

initial condition vectors are picked, one for each burst. After generating the Lotka-Volterra system as described in

Section 2.1, the R package deSolve[22], an ODE solver, can calculate the biomass of all species at each of the times

for each burst using the system and initial conditions. We now have the state data which we attempt to recover the

system with. Noise can be added at this point by generating a matrix of the same dimensions as the measurements

with elements pulled from a Gaussian. Regardless of if noise is added, we construct the monomial matrices B
(k)
i ,

and use the R package CVXR[23], which solves the convex optimization problem presented through an ADMM-based

first-order method[24]. Following this, we can clean up and de-noise the matrix by setting coefficients with an order

of 10−5 or less to 0.

There are two main objectives we are aiming to estimate are the trophic links (ie. which coefficients are non-zero)

and the magnitude of interactions (ie. the value of the coefficients themselves). The success with which compressive

sensing attains these objectives can be measured in many different ways, but we have chosen to consider only the

following metrics, which track the approximation quality of the recovered coefficients and dynamics:

1) Percentage of coefficients that were recovered

In Sections 3 and 4, the topic of unrecovered coefficients is covered in greater detail, but in essence, when there is not

enough information,compressive sensing is unable to return any estimate. The percentage of coefficients unrecovered

is

number of coefficients unrecovered

n2 + n
.

The denominator is the total number of coefficients we are trying to recover.

2) Euclidean distance between A and Â

Euclidean distance is perhaps the most straightforward, and answers the question ”How close is Â to A?”. First,

bind the r and A together to form a single n+ 1× n matrix. Take the Euclidean distance as follows.

d(A, Â) =

n+1∑
i=1

n∑
j=1

|aij − âij |2
 1

2

3) Difference in leading Eigenvalue of A and Â

Eigenvalues describe the magnitudes by which a space is stretched by a transformation represented by a matrix.

The leading Eigenvalue is important, as it is the dominant stretching action performed. Understanding the system in

this way allows us to understand the stability of the system.

4) Type I and II error of tropic links recovered

Type I and type II error are both measures of trophic link recovery. Type I error refers to false negatives, and type

II error refers to false positives. Both types of error were calculated as a percentage of the total amount of the possible

error of that type. I.e. in the case of type I error, the total number of false negatives is the number of trophic links in

the initial system and the total amount of possible type II error is the number of non-active links in the initial system.
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5) Average absolute error using new initial conditions

With A, r, Â, and r̂, a natural metric to determine the accuracy of the recovered system is to generate new initial

conditions, and solve the initial and estimated systems. Subtracting the biomass of each species in the two sequences

then taking the absolute value and median of all values for a given time yields the median absolute error.

3 Results

With an empirical, a recovered systems, and a new set of initial conditions, the most direct results we obtain are two

new time series by solving for both systems, thereby obtaining predicted states and the actual states of the ecosystem.

One such example is shown in Figure 5, where the predicted and actual dynamics are plotted for each of the ten

species. We used two bursts of data, i.e. K = 2 to construct our estimate.

Figure 5. The biomasses of species 1 through 10 in the empirical system and reconstructed system, which was recovered with
2 bursts of data.

As can be seen in Figure 6, the phase transition between 30% of coefficients being unrecoverable and all of the

coefficients being recoverable occurs rather abruptly between two and four bursts. With five bursts, compressive sensing

is consistently returning an estimate for all coefficients. Recall that two bursts is only sixteen measurements and four

bursts is thirty-two state measurements. This is a full order of magnitude smaller than the 110 coefficients we are

attempting to recover.

Note that in Figure 6 and all following, the points have been jittered, that is, a small amount of random noise has

been added. This prevents the points from being clustered too closely, and that lateral spread allows the individual
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Figure 6. Jittered plot showing percentage of unrecovered coefficients as a function of burst length

points to be more visible. Additionally, the following metrics were measured only from systems which were entirely

recovered, that is, all metrics are conditional upon successful recovery. For example, the trophic links in a coefficient

matrix that was 80% recovered would not be included in the count of those that were recovered, nor would the trophic

links in the initial matrix be included in the trophic links compressive sensing was attempting to recover.

Figure 7. Jittered plot showing the Euclidean norm of the difference between A and Â

In Figure 7, as expected, the average Euclidean distance shrinks as the number of bursts increases. The y-axis is

logarithmically scaled and the decrease is actually quite a bit more than what a quick glance reveals. At six bursts, the
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error is, on average below 10−6, and in any application context, is functionally zero. Bifurcation can also be observed

at that point where the median drops significantly, and exact recovery to machine precision can be observed in an

increasing percentage of systems as the number of bursts increases.

Unsurprisingly, Figure 8 very closely mirrors Figure 7. Since the order of magnitudes are so small and compressive

sensing is essentially exactly reconstructing the matrix after five bursts, so here, a smaller norm difference is equivalent

to closer leading Eigenvalues. This represents more similar behaviour by the systems around equilibrium and stability

properties. In both graphs we see a significant amount of bifurcation, and so the performance of compressive sensing

is actually better than what the mean might suggest. With seven bursts, this method is recovering the exact system

to mach precision more than half of the time.

Figure 8. Jittered plot showing the difference between the dominant Eigenvalue of A and Â

Figure 9 shows both the Type I and Type II Error for trophic link recovery. For two bursts, there is a fairly

significant amount of error; more false negatives than false positives. However, by three bursts, for all matrices that

are recovered in their entirety, every single trophic link is correctly identified, and that holds for all bursts greater

than three as well.

Figure 10 follows similar trends to the previous metrics in that more bursts leads to better results. Note that

the y-axis is logarithmically scaled, and so while there is significant improvement between all burst lengths, we can

conclude that there is a certain point at which more bursts are not necessary. When using empirical data, the difference

between an error of 10−12 and 10−16 would be negligible.

Having covered one of the major issues with data extensively (not enough), we now turn to the other: what if the

data is noisy? This is a critical consideration because empirical noiseless data is impossible. While stability to noise
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Figure 9. Jittered plot showing the Type I and Type II error of Â with respect to A as a function of number of bursts

Figure 10. Median error of reconstructed biomass of each species as a function of time

was not a parameter tested in this paper, it has been shown that this method of compressive sensing is noise-resilient.

We measure noise as follows: if ϵ is a matrix of the same dimension as the measurement matrix, X, generated through

a Gaussian distribution, let us define the noise ratio as

Noise ratio =
||ϵ||2
||X||2

× 100% (11)
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Gaussian noise of up to 5% allows for stable reconstruction, after 5%, we see a marked increase in ℓ2 error, with

noise over 6% yielding inaccurate and unstable results[17].

4 Discussion

Preliminary results are extremely promising. Compressive sensing was able to estimate, with a great degree of accuracy,

the coefficients of the underlying Lotka-Volterra system generated via the niche model and allometric coefficients.

Compressive sensing is by no means the only way to estimate how dependent variables drive independent variables.

In fact, the entire field of regression analysis is centred on this question. There are, however, a few characteristics

of compressive sensing which make it particularly suited to ecological contexts over other common methods such as

ordinary least squares regression (a form of linear regression).

The number of possible connections grow exponentially with the number of species. As such, linear regression,

which solves overdetermined systems, becomes very data hungry very quickly. A general rule of thumb is that for each

variable we aim to solve for, ten to twenty data points are required[9]. This is less of an issue if the trophic links are

known; in that case, some of the coefficients can be set as zero, and so we reduce the data required whereby reducing

coefficients to solve for. However, even when trophic links are ”known” it is important to consider that they are not a

certainty and new links are still being uncovered[1]. Taking into account non-trophic relationships becomes even more

difficult, as we run into the same issue of the data required growing exponentially while ethological links and their

comparative strengths are still relatively unknown. Conversely, using a monomial decomposition then compressive

sensing has a theoretical lower bound on data required that scales logarithmically with the number of species[17]. This

affords us the luxury of not having to choose which links are ”active” in the estimated final system, and instead allows

the algorithm to pick the best possible answer from a larger solution space, and ensures preconceived notions and

biases play less of a role. While feasibility of compressive sensing was explored within a dynamical system of purely

trophic links, it does not require all links to be trophic. In fact, the reverse is true: compressive sensing makes no

distinction between trophic, behavioural, or any other type of link, potentially allowing for a deeper understanding of

ethological links between species.

Linear regression also makes some key assumptions about the inputs which are not guaranteed to be satisfied.

Firstly, observations must be made independently of each other. Given that time series data represents the biomass of

a species over time, it is trivial to see that data taken at one time is not independent of the data taken at lag one[9].

Multicollinearity, or the strong correlation of explanatory variables is common, especially among short time bursts,

and even in chaotic systems[3]. This can obfuscate the true nature of relationships and complicates statistical and

inferential interpretation[8][25].

This is of course not to say the compressive sensing is a flawless solver. The major challenge in reconstruction for

compressive sensing are phase transitions, which is a general term for a sizable threshold which marks a sudden shift

in the likelihood of a given property being observed. That is, there is a threshold such that for any amount of data
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below this amount, compressive sensing is unable to return a result at all; there is no gradual breakdown[26]. The

tests we ran used two to eight bursts because all simulations with one burst, failed to yield any estimate at all. This is

a property inherent to the solving method itself, and a potential future avenue for research would be to explore how

phase transitions are affected by having access to data on only certain focal species within the system. Would it still

be possible to estimate the dynamics accurately[1]? Are there certain ecosystems that are more resistant and likely to

be recovered by fewer bursts, and what properties might they share?

In summary, compressive sensing has proven capable of parameter estimation in an ecological context, and unsur-

prisingly, the potential it has demonstrated simply opens up more avenues for future research. Compressive sensing

is exceptional at recovering trophic links without any inputs detailing interactions and it is reasonable to assume

that it would perform equally well in recovering other types of interactions in other models. This fits nicely with the

demands of fishery modeling, where undersampled data is common and current models often ignore linkages in lower

trophic levels[1]. Whether the trophic links can be recovered using compressive sensing, the value of the coefficients

determined using least squares or LASSO, and whether this would even be efficient remains to be seen. Further study

on the recovery of focal species dynamics and whether the best reconstructed set of interactions would still be sparse

would also be necessary to better understand the full extent of compressive sensing’s capabilities in reconstructing

population dynamics.
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5 Appendix

5.1 Variables & Definitions

Note that not all variables are included in this list. Allometric coefficients in Table ?? are omitted as are the variable

briefly used to describe norms, as they are not used elsewhere in the paper.
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Variable Definition

n Number of species

S Connectance or Sparsity

x Vector of biomasses of all species at a given time

xi Biomass of ith species, ith value of x

ẋ Rate of change vector for biomasses of all species at a given time

t Time

r n-length vector of species growth rates

ri Growth rate of species i, ith value of r

A n× n interaction matrix, Lotka-Volterra coefficients

aij Effect of species j on species i, Lotka-Volterra coefficient

νi Niche value of ith species

ρi Niche range diameter of ith species

γi Niche range centre of ith species

R Biomass of arbitrary resource species, Yodzi & Innes

P Biomass of arbitrary resource species, Yodzi & Innes

v, w Allometric rates, Yodzi & Innes

ϕi Number of prey of species i

k Index of current burst

K Total number of bursts

V (k) Velocity matrix for kth burst

ẋi(k, tm) Velocity of the biomass of species xi in kth burst at time m

M Burst length, given as M = 8

C Full coefficient matrix for all monomial bases, dimension n× (n2 + n)

B
(k)
i Monomial basis for ith species in kth burst

C ′ Reduced coefficient matrix, all guaranteed zero terms removed

V ”Stacked” list of velocity matrices for all k in K

B
(k)
i ”Stacked” list of monomial for all k in K

Ĉ Estimate of C ′

Â Estimate of A

r̂ Estimate of r


